This node performs Target Shuffling by randomly permuting the values in one column of the input table. This will break any connection between input variables (learning columns) and response variable (target column) while retaining the overall distribution of the target variable. Target shuffling is used to estimate the baseline performance of a predictive model. It's expected that the quality of a model (accuracy, area under the curve, R², ...) will decrease drastically if the target values were shuffled as any relationship between input and target was removed. It's advisable to repeat this process (target shuffling + model building + model evaluation) many times and record the bogus result in order to receive good estimates on how well the real model performs in comparison to randomized data. Target shuffling is sometimes called randomization test or y-scrambling. For more information see also Handbook of Statistical Analysis and Data Mining Applications by Gary Miner, Robert Nisbet, John Elder IV.
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME Base nodes from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!