Learns a random forest*, which consists of a chosen number of decision trees. Each of the decision tree models is built with a different set of rows (records) and for each split within a tree a randomly chosen set of columns (describing attributes) is used. The row sets for each decision tree are created by bootstrapping and have the same size as the original input table. The attribute set for an individual split in a decision tree is determined by randomly selecting sqrt(m) attributes from the available attributes where m is the total number of learning columns. The attributes can also be provided as bit (fingerprint), byte, or double vector. The output model describes a random forest and is applied in the corresponding predictor node.
This node provides a subset of the functionality of the Tree Ensemble Learner corresponding to a random forest. If you need additional functionality please check out the Tree Ensemble Learner.
Experiments have shown the results on different datasets are very similar to the random forest implementation available in R.
The decision tree construction takes place in main memory (all data and all models are kept in memory).
The missing value handling corresponds to the method described here. The basic idea is that for each split to try to send the missing values in every possible direction; the one yielding the best results (i.e. largest gain) is then used. If no missing values are present during training, the direction of the split that the most records are following is chosen as the direction for missing values during testing.
Nominal columns are split in a binary manner. The determination of the split depends on the kind of problem:
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME Ensemble Learning Wrappers from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!