Learns an ensemble of regression trees (such as random forest* variants). Typically, each tree is built with a different set of rows (records) and/or columns (attributes). See the options for Data Sampling and Attribute Sampling for more details. The attributes can also be provided as bit (fingerprint), byte, or double vector. The output model describes an ensemble of regression tree models and is applied in the corresponding predictor node using a simple mean of the individual predictions.
In a regression tree the predicted value for a leaf node is the mean target value of the records within the leaf. Hence the predictions are best (with respect to the training data) if the variance of target values within a leaf is minimal. This is achieved by splits that minimize the sum of squared errors in their respective children.
For a more general description and suggested default parameters see the node description of the classification Tree Ensemble Learner.
Select the attributes on which the model should be learned. You can choose from two modes.
Fingerprint attribute Uses a fingerprint/vector (bit, byte and double are possible) column to learn the model by treating each entry of the vector as a separate attribute (e.g. a bit vector of length 1024 is expanded into 1024 binary attributes). The node requires all vectors to be of the same length.
Column attributes Uses ordinary columns in your table (e.g. String, Double, Integer, etc.) as attributes to learn the model on. The dialog allows you to select the columns manually (by moving them to the right panel) or via a wildcard/regex selection (all columns whose names match the wildcard/regex are used for learning). In case of manual selection, the behavior for new columns (i.e. that are not available at the time you configure the node) can be specified as either Enforce exclusion (new columns are excluded and therefore not used for learning) or Enforce inclusion (new columns are included and therefore used for learning).
Use same set of attributes for each tree means that the attributes are sampled once for each tree and this sample is then used to construct the tree.
Use different set of attributes for each tree node samples a different set of candidate attributes in each of the tree nodes from which the optimal one is chosen to perform the split. This option is used in random forests.
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME Ensemble Learning Wrappers from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com, follow @NodePit on Twitter or botsin.space/@nodepit on Mastodon.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.