This workflows reads data from Snowflake database containing sensor readings. Seconds are removed in time stamps and temperature readings are averaged over the hour. Missing timestamps are introduced and filled using Linear Interpolation. Reasonable number of rows are considered for training and testing. Data is partitioned and SARIMA model is trained, finally results are visualized in the component along with original values.
URL: S.A.R.I.M.A. Seasonal ARIMA Models with KNIME https://www.knime.com/blog/sarima-seasonal-arima-models-with-knime
URL: An Introduction to Integrated Deployment https://www.knime.com/blog/integrated-deployment-blog-series-episode-1-an-introduction-to-integrated-deployment
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.