U-Net 2D - Encoding Layer

This component can be used for the encoding layers of a U-Net for 2D data. The following layers are used:

* 2D Convolution Layer
* Dropout Layer
* 2D Convolution Layer
* Max Pooling 2D Layer

An input is required for:
* Filter size for the Convolution layers, e.g. 16
* Activation Function for the Convolution layers, e.g. ELU
* Kernel Size for the Convolution layers, e.g. 3,3
* Dropout Rate for the Dropout layer, e.g. 0.1
* Random seed for the Dropout layer and for the Kernel Initializer in Convolution layers, e.g. 12345
* Pool Size (and Strides) for the Max Pooling layer, e.g. 2,2


The following settings are fixed and passed to the U-Net 2D - Decoding Layer component:
* Strides for the Convolution layers are set to 1,1
* Padding for the Convolution layers is set to "SAME"
* Kernel Initializer for the Convolution layers is set to "He Normal"

The corresponding U-Net 2D - Decoding Layer component can be used to create a complete U-Net.

The required extensions:
- KNIME Deep Learning - Keras Integration

Options

Dropout Rate
Fraction of the input units to drop.
2D Convolution Filter
The dimensionality of the output space (i.e. the number of output filters in the convolution).
Random Seed
Random seed for Dropout Layer
Activation Function
The activation function to use.
Kernel Size
A tuple of 2 integers, specifying the height and width of the 2D convolution window.
MaxPooling Pool Size
The size of the pooling window in two dimensions.%%00010

Input Ports

Icon
Either a Keras Input Layer or a previous U-Net - Encoding Layer

Output Ports

Icon
Convoluted Keras Layers
Icon
Convoluted and Max Pooling Keras Layers

Nodes

Extensions

Links