Icon

outlier_​detection_​techniques

Four Techniques for Outlier Detection
Read Data Preprocess Data Outlier Detection - Numeric Outlier Outlier Visualization This workflow detects outliers in the data using the following techniques: numeric outlier, z-score, DBSCAN and isolation forest. Outlier Detection - Z-Score Outlier Detection - DBSCAN Outlier Detection - Isolation Forest Detect outliersGroup by arrival airportRead airlinedataClusteringDistance functionDetect outliersIsolation forestk-valueThreshold zMinPtsEpsilon MapViz Numeric Outliers Preproc Read data DBSCAN Numeric Distances Merge Variables Mark outliers Row Filter Density of delay MISSING PythonScript (1⇒1) Mark outliers Mark outliers Mark outliers MapViz MapViz MapViz DoubleConfiguration DoubleConfiguration IntegerConfiguration DoubleConfiguration Read Data Preprocess Data Outlier Detection - Numeric Outlier Outlier Visualization This workflow detects outliers in the data using the following techniques: numeric outlier, z-score, DBSCAN and isolation forest. Outlier Detection - Z-Score Outlier Detection - DBSCAN Outlier Detection - Isolation Forest Detect outliersGroup by arrival airportRead airlinedataClusteringDistance functionDetect outliersIsolation forestk-valueThreshold zMinPtsEpsilon MapViz Numeric Outliers Preproc Read data DBSCAN Numeric Distances Merge Variables Mark outliers Row Filter Density of delay MISSING PythonScript (1⇒1) Mark outliers Mark outliers Mark outliers MapViz MapViz MapViz DoubleConfiguration DoubleConfiguration IntegerConfiguration DoubleConfiguration

Nodes

Extensions

Links