The workflow reads textual data from a csv file and converts the strings into documents. The documents are then preprocessed, i.e. filtered and stemmed. The preprocessing magic takes place in the Preprocessing metanode. In the Feature Creation metanode two kinds of feature sets and document vectors are created. The top set of vectors contains only single word features the bottom set of vectors contains single word and 2-gram features.
After the document vectors have been created the sentiment class is extracted and two predictive models are built and scored. One model based only on single word features and the second model based on single word and 2-gram features. Bothe models are compared in the ROC curve node.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com, follow @NodePit on Twitter or botsin.space/@nodepit on Mastodon.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.