t-SNE is a manifold learning technique that learns low-dimensional embeddings for high-dimensional data. It is most often used for visualization purposes because it exploits the local relationships between data points and can hence capture non-linear structures in the data. Unlike other dimension reduction techniques like PCA, a learned t-SNE model can't be applied to new data. The t-SNE algorithm can be roughly summarized as two steps:
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME SMILE Machine Learning Integration from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!