H2O MOJO Predictor (Regression)

This node applies a regression MOJO to an input dataset.

Options

General Settings

Enforce presence of all feature columns
If checked, the node will fail if any of the feature columns used for learning the MOJO is missing. Otherwise, a warning will be displayed and the missing columns are treated as NA by the MOJO predictor.
Fail if a prediction exception occurs
If checked, the node will fail if the prediction of a row fails. Otherwise, a missing value will be the output and a warning will be given.
Treat unknown categorical values as missing values
By default, H2O does not handle the case that a categorical feature column contains a value that was not present during model training. If this option is enabled, H2O will convert these values to NA, i.e. treat them as missing values. If this option is disabled, the node will either fail or missing values will be in the output depending on the setting "Fail if a prediction exception occurs".

Regression Settings

Change prediction column name
Change the name of the prediction column.

Input Ports

Icon
The MOJO. Its model category must be regression.
Icon
Table for prediction. Missing values will be treated as NA .

Output Ports

Icon
Table containing the predicted value.

Views

This node has no views

Workflows

Links

Developers

You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.