Predictor node to the Fingerprint Bayesian Learner node, assigning score values to test data. The input data needs to contain fingerprint descriptors as used in the corresponding learner. It computes a score for each input record by summing up the log values that are associated with the fingerprint on-bits (sum-of-logs). This corresponds to equation (6) in
Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases, Nidhi Meir Glick, John W. Davies, and Jeremy L. Jenkins, J. Chem. Inf. Model., 2006, 46 (3), pp 1124–1133This score represents the confidence of a record to belong to the same category as the target category (the attribute value that was selected in the Learner node). Additionally, the node allows the user to append a crisp class prediction. This prediction is done by comparing the computed score to a threshold, whereby the threshold can be either be fixed or a value derived from the model. Details are described below.
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME Base Chemistry Types & Nodes from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!