The Correlation Extension node is designed to take an 'Input Correlation Matrix' and intelligently extend it using a list of 'Input Correlation Pairs'.
The Correlation Matrix represents the degree of Horizontal Differentiation between Features, Benefits, Attributes, Levels, and Products. The Correlation Matrix may be used by a downstream node (such as the Matrix Distributions node or the Feature Generation node) to generate a set of Customer Distributions comprising the Willingness To Pay (WTP) of individual Virtual Customers.
For example, the 'Input Correlation Matrix' may be a 3x3 matrix of correlation values (doubles between -1.0 and +1.0) with row names and column names of 'A', 'B', and 'C'. The names A, B, and C may be Features or Products. The matrix describes all the correlations between Customer Distribution A, Customer Distribution B, and Customer Distribution C.
The list of 'Input Correlation Pairs' contains additional relationships used to extend (grow) the original 'Input Correlation Matrix'. These input correlation values change the Correlation Matrix in two ways:
(a) Replace existing correlations already found in the Correlation Matrix, and
(b) Add new rows of correlations to the Correlation Matrix.
For example, if the 'Input Correlation Pairs' list contained the relationship ('A', 'B', 0.7) then the node would simply replace the existing (single) correlation value already found in the original Correlation Matrix.
However, if the 'Input Correlation Pairs' list contained the relationship ('A', 'X', 0.5) then the node would add a whole row to the Correlation Matrix with values for A:X, B:X, and C:X. The correlation for the pair A:X would be set to the 0.5 value found in the 'Input Correlation Pairs' relationship. But the correlation values for B:X and C:X would also be set by multiplying 0.5 by the existing correlations for A:B and A:C.
The user does not have to specify each correlation in every new row of the Correlation Matrix - the node will do this automatically. But if the user wishes to specify each correlation value themselves, then they can do so by adding additional rows to the bottom of the 'Input Correlation Pairs' list. The node processes this list of relationships row-by-row, so after adding a new row for [A:X, B:X, C:X] the user could override the calculated correlations for B:X and C:X.
Multiple relationships are used when filling in missing correlation values. For example, if the list contained the relationship ('A', 'X', 0.5) and ('B', 'X', 0.4) then the missing correlation for the pair C:X would be blended from the correlations A:C:X and B:C:X.
Note that the 'Input Correlation Matrix' will be converted into a clean and symmetrical Correlation Matrix when first loaded. That means: (a) the diagonal A:A, B:B, C:C correlations will be set to 1.0; (b) correlation values will be range-limited to between -1.0 and +1.0; (c) missing correlations will be set to 0.0; and (d) the correlation for A:B will be set the same as the correlation for B:A (hence lower-left-triangle and upper-right-triangle correlation matrices can be input).
The correlations found in the list of 'Input Correlation Pairs' are not range-limited when first loaded and can be set outside the [-1.0 to +1.0] limit to boost the correlation with existing entries. But the final correlations found in the output tables will be so range-limited.
The purpose of this node is to allow the user to quickly extend an existing Correlation Matrix with new rows given limited available data. For example, a Willingness To Pay (WTP) Matrix may have been calculated by an upstream node for the user's own Products, and now the user wishes to add Competitive Products to this WTP Matrix. The user may know each Competitive Product is a 'Perfect Match' (correlation = 0.9) or a 'Near Match' (correlation = 0.7) to one of their own Products ('Perfect Match' Products tend not to be perfectly correlated as the buying experience from the Competitor's store will still be different). But the user may not know the correlation between the matched Competitive Product and all of the other Products in the Market. If the matched Product is also the most similar Product, then this node can approximate the correlations to all other Products.
More Help: Examples and sample workflows can be found at the Scientific Strategy website: www.scientificstrategy.com.
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension Market Simulation nodes by Scientific Strategy for KNIME - Community Edition from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.