This workflow exemplifies how KNIME can be used to make data FAIR. The use case is a low-throughput screen conducted by academic partners. The results are published in this paper: https://doi.org/10.14573/altex.1712182.
The workflow that combines data and information from 50 individual data Excel files into one large data table. The CAS numbers as chemical identifiers were extended by SMILES, InChI and InChI keys using the RDKit KNIME community nodes and REST API to enhance interoperability. The metadata was extended by controlled vocabulary using REST API and programmatical access to chEMBL and chEBI databases. To comply with FAIRness, details about the used databases and ontologies are extracted as well. To give as much provenance as possible, user-defined metadata is added using the interactive Table Editor. Depending on the repository where the (meta)data should be deposited at, the workflow can be extended by automatic upload using a PUT request.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.