Challenge 23
Level: Easy to Medium
Description: You are a social scientist who needs to create some synthetic data for an imaginary population consisting of 1000 people, including attributes age, height, and weight. Start by generating a Gaussian age distribution using a mean of 40 and a standard deviation of 10, then bin people into four age groups: 'Children', 'Young Adults', 'Adults', and 'Seniors’. For each group, generate heights using a beta distribution with realistic parameters. Categorize heights into three groups: ‘< 160cm', ‘> 180', and 'rest’. Based on the binned height information, generate weights using a gamma distribution that accurately models weight distributions per age group. Visualize the relationships and identify patterns and correlations within this synthetic population.
Author: Keerthan Shetty
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.