We used neural networks for the image recognition task. Neural networks are massively parallel adaptive processing structures consisting of one or more layers, each layer one or more neurons. Three types of layers exist: Input (receiving data from its environment, providing processed data to other layers), hidden (receiving and providing processed data from and to other layers) and output (receiving processed data from other layers, providing information to the environment) layers. Weighted connections exist between the neurons of each layer, changing them is the key to its adaptability, which happens based on the difference between the predicted and the expected results.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com, follow @NodePit on Twitter, or chat on Gitter!
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.