Proyek ini bertujuan untuk meningkatkan pendapatan box office bagi studio film dan bioskop melalui analisis mendalam data penjualan tiket dan tren pasar. Dengan memanfaatkan machine learning, khususnya model Decision Tree, workflow ini membersihkan data, melatih model untuk memprediksi pendapatan box office, dan mengevaluasi kinerja model menggunakan metrik kinerja serta ROC curve. Model yang dilatih kemudian disimpan dalam format PMML untuk kebutuhan deployment lebih lanjut. Analisis ini membantu klien memahami preferensi penonton dan perilaku pasar global, sehingga dapat merumuskan strategi pemasaran dan distribusi yang lebih efektif serta membuat keputusan bisnis yang lebih tepat dan strategis.
Workflow ini sebagai Tugas Final Project SIB-6 Academy Codeless Data Science NF Academy.
The project aims to increase box office revenue for film studios and cinemas through in-depth analysis of ticket sales data and market trends. By leveraging machine learning, specifically the Decision Tree model, this workflow cleans the data, trains the model to predict box office revenue, and evaluates model performance using performance metrics and ROC curve. The trained model is then saved in PMML format for further deployment needs. This analysis helps clients understand audience preferences and global market behavior, enabling them to formulate more effective marketing and distribution strategies and make more accurate and strategic business decisions.
This workflow is the Final Project Assignment for SIB-6 Academy Codeless Data Science at NF Academy.
Link Dataset : https://www.kaggle.com/datasets/mdtoomey/box-office-of-dc-and-marvel-superhero-movies
Group-1 Kelompok-2
Ketua : Nabil Hakiim, Kamiliya Latifah Prasmaisya, Mey Nur Aisyah, M. Filla Akbar, Riska Falia
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.