You would like to post a question on the KNIME forum, but you have confidential data that you cannot share. In this challenge you will create a workflow which removes (or transforms) any columns that reveal anything confidential in your data (such as location, name, gender, etc.). After that, you should shuffle the remaining columns' rows such that each numeric column maintains its original statistical distribution but does not have a relationship with any other column. Rename these columns as well, such that in the end of your workflow they do not have any specific meaning. Let's see an example:
Example:
BEFORE ANONYMIZATION
Row Name Fav_Num Muscle_Mass
0 Victor 7 10
1 Aline 3 20
2 Scott 42 30
AFTER ANONYMIZATION
Row column column (#1)
0 3 30
1 42 10
2 7 20
Feel free to see our resources on data anonymization for inspiration (https://www.knime.com/blog/data-anonymization-in-knime-a-redfield-privacy-extension-walkthrough) , but note that the task here is much simpler! For reference, our solution only uses 7 nodes to anonymize and 3 additional nodes to do make sure the data truly was anonymized.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.