Principal Component Analysis Predict VAL

The Predict function generates PCA scores using the model created by PCA VALIB function. The scoring process expresses each component as a linear combination of the input columns. There is an additional required input table that specifies the model used by the VALIB PCA function.

Options

Accumulate
Specifies one or more columns from the 'data' DataFrame that can be passed to the result output DataFrame.
Index Columns
Specifies one or more different columns for the primary index of the result output DataFrame.
Output Schema
Output Schema, if Volatile is true then use user login as the schema.
Output Table
Output Table
VAL Location
VAL Location

Input Ports

Icon
Connection to a Teradata Database Instance
Icon
Principal Component Analysis Predict VAL input
Icon
Principal Component Analysis Predict VAL input

Output Ports

Icon
Principal Component Analysis Predict VAL output

Nodes

Extensions

Links