TD_​WordEmbeddings

This function generates embeddings of documents and words. It also finds similarity between the texts. This helps in machine learning applications because many machine learning algorithms process real values rather than text.

Options

Accumulate
Specify which columns to be accumulated from input to output.
ConvertToLowerCase
Specify whether to convert input data to lower case.
IDColumn
Specify the IDColumn in InputTable which contains unique values.
ModelTextColumn
Specify the ModelTable column which contains the token in ModelTable.
ModelVectorColumns
Specify the ModelTable columns which contains the vectors for each token.
Operation
Specify which operation needs to be performmed on the data.
PrimaryColumn
Specify the PrimaryColumn which contains the text data.
RemoveStopWords
Specify whether to remove stop words the input data.
SecondaryColumn
Specify the SecondaryColumn which contains the text data applicable only if operation is token2token-similarity or Doc2Doc-similarity.
StemTokens
Specify whether to stem tokens from the input data.
Output Schema
Output Schema, if Volatile is true then use user login as the schema.
Output Table
Output Table
VAL Location
VAL Location
Volatile
Specifies whether the table should be a VOLATILE table. If true, then the table is automatically deleted, otherwise it is users responsibility to remove or clean it up for space.

Input Ports

Icon
Connection to a Teradata Database Instance
Icon
Specifies the table containing the input text data from user.
Icon
Specifies the table containing the vectors for all the possible tokens.

Output Ports

Icon
output of TD_WordEmbeddings

Nodes

Extensions

Links