Icon

02_​Explainable_​Artificial_​Intelligence_​(XAI)

XAI View Component with AutoML

This application is a simple example of AutoML with KNIME Software for binary and multiclass classification. The output models are then explained via the interactive XAI View, which works for any model the AutoML component produces. Machine Learning Interpretability (MLI) techniques used: SHAP explanations/reason codes, partial dependence, individual conditional expectation (ICE) curves and a surrogate decision tree.

The workflow also works locally on KNIME Analytics Platform. Make sure to use "Apply and Close" in bottom-right corner of each view.

URL: KNIME Integrated Deployment - KNIME.com https://www.knime.com/integrated-deployment
URL: AutoML Component - KNIME Hub https://kni.me/c/33fQGaQzuZByy6hE
URL: XAI View Component - KNIME Hub https://kni.me/c/no0cArkQ94BnNpeb
URL: Interpretable Machine Learning - Christoph Molnar - 2020-09-28 https://christophm.github.io/interpretable-ml-book/
URL: Explainable artificial intelligence - WIkipedia https://en.wikipedia.org/wiki/Explainable_artificial_intelligence

Top: rest of the dataBottom: rows to explainRight Click > Execute & Open Viewtop: Dataset Samplemiddle: from AutoML componentbottom: Explainable Instances----output: Explanationstitanic.csvAutoML Partitioning XAI View CSV Reader Top: rest of the dataBottom: rows to explainRight Click > Execute & Open Viewtop: Dataset Samplemiddle: from AutoML componentbottom: Explainable Instances----output: Explanationstitanic.csvAutoML Partitioning XAI View CSV Reader

Nodes

Extensions

Links