few-shots learning can be achieved on LLM via in-context learning.
This example shows how to achieve a data app that translates roman dialect.
The input of the model:
<<<
Translate: {wow}
ammazza
Translate: {wow}
da paura
Translate: {come on}:
daje!
Translate: {feeling tired}:
abbiocco
Translate: {nap}:
'na pennica
Translate: {hell yeah}:
avoja
Translate: {it's hot}:
sto ‘a schiumà
Translate: {let's go}:
damose
Translate: {what's up?}:
>>>
The output:
<<< Che succede? >>>
URL: Prompt Engineering - Wikipedia https://en.wikipedia.org/wiki/Prompt_engineering
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.