This application is a simple example of AutoML with KNIME Software for binary and multiclass classification. The output models are then explained via the interactive XAI View, which works for any model the AutoML component produces. Machine Learning Interpretability (MLI) techniques used: SHAP explanations/reason codes, partial dependence, individual conditional expectation (ICE) curves and a surrogate decision tree.
The workflow also works locally on KNIME Analytics Platform. Make sure to use "Apply and Close" in bottom-right corner of each view.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!