This workflow trains and applies an LSTM network to predict energy demand using lagged values of a time series as input.
In the Evaluation and Predictions part the trained model is then used for in-sample and out-of-sample forecasting. The forecasted values are compared to the actual values, and the performance of the forecast is reported via scoring metrics and a line plot.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!