This workflow uses a subset of the Kaggle Dataset including 14K customer tweets towards six US airlines (https://www.kaggle.com/crowdflower/twitter-airline-sentiment). Contributors annotated the valence of the tweets as positive, negative or neutral. For this example we use only positive and negative.
If you use this workflow, please cite: Villarroel Ordenes, Francisco, Grant Packard, Davide Proserpio, and Jochen Hartmann, “Using Text Analysis in Service Failure and Recovery: Theory, Workflows, and Models”, Journal of Service Research, Forthcoming.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.