Description: You ara a data scientist working for a real estate company, and heard a rumour that the "average number of rooms per dwelling" (RM) may be connected to the "per capita crime rate" (CRIM) depending on the city/town. You then decide to investigate if this is the case for Boston, the city where you live and work from. To this end, you decide to experiment with a machine learning regression model and with a topic that you have recently been studying: XAI. How are RM and CRIM connected in Boston? Hint: Consider calculating the SHAP values of each independent feature using a SHAP loop. Hint 2: Consider using a dependence plot to verify how RM and CRIM are connected visually.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.