This workflow addresses the problem of extracting and modeling topics from reviews.
Block 1 performs the data preparation on review texts. Block 2 optimizes the parameters for the LDA algorithm. Block 3 applies the LDA algorithm with optimized parameters and displays the LDA topic probabilities along with the average number of stars by topic. Block 4 estimates the importance of topics via linear regression (KNIME) and polynomial regression (R).
If you use this workflow, please cite:
F. Villaroel Ordenes & R. Silipo, “Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications”, Journal of Business Research 137(1):393-410, DOI: 10.1016/j.jbusres.2021.08.036.
URL: 10.1016/j.jbusres.2021.08.036 http://10.1016/j.jbusres.2021.08.036
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.