The workflow builds, trains, and saves an RNN with an LSTM layer to generate new fictive fairy tales. The brown nodes define the network structure. The "Pre-Processing and Encoding" part of the workflow reads the fairy tales, index-encodes them, and creates semi-overlapping sequences. The Keras Network Learner node trains the network using the index-encoded fairy tales. Finally, the trained network is converted into a TensorFlow model, and saved to a file.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.