In building statistical ARMA-style forecasting models, a necessary precondition is that the time series being modeled be stationary: stationary with respect to mean; stationary with respect to covariance; and, stationary with respect to variance. Quite often, the time series that the data scientist wishes to model contains a trend - meaning that the time series is non-stationary with respect to the mean; or, alternatively may contain some periodicities (cyclic variance in data). This trend and/or periodicities must be removed before modeling may begin. Once the data scientist has devised a formula to represent the trend or periodic behaviors, their next task is to generate a series using that formula; such that they can then input both the original series and formula driven series through a pointwise subtractor function, which forms a new series with the trend and/or periodicities subtracted out.
To use this component in KNIME, download it from the below URL and open it in KNIME:
Download ComponentDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!