This workflow shows how to access time series data, make it equally-spaced, impute missing values, aggregate it at a greater granularity, and explore it visually. After these steps, the time series is decomposed into trend, seasonality, and residual. The residual is modeled with an ARIMA model, and deployment data are saved for testing the model's out-of-sample forecast accuracy.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!