This workflow shows how to perform a lexicon based approach for sentiment analysis of IMDB reviews dataset. The dataset contains movie reviews, previously labeled as positive/negative. The lexicon based approach assigns a sentiment tags to words in a text based on dictionaries of positive and negative words. A sentiment score is then calculated for each document as: (number of positive words - number of negative words) / total number of words.
Dataset Reference
Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).
URL: Read more about lexicon-based sentiment analysis: a tutorial https://www.knime.com/blog/lexicon-based-sentiment-analysis
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.