Extracts the documents, embeddings and metadata from a vector store into a table. This table can be combined with tables extracted from other vector stores to merge multiple vector stores into one by creating a new vector store from the combined table.
Note: If you use the Credentials Configuration node and do not select the "Save password in configuration (weakly encrypted)" option for passing the API key for the embeddings connector node, the Credentials Configuration node will need to be reconfigured upon reopening the workflow, as the credentials flow variable was not saved and will therefore not be available to downstream nodes.
Specify the name of the output column holding the documents.
Specify the name of the output column holding the embeddings.
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME Python Extension Development (Labs) from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.