Classifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves
The algorithm can deal with binary and multi-class target variables, numeric and nominal attributes and missing values.
For more information see:
Niels Landwehr, Mark Hall, Eibe Frank (2005).Logistic Model Trees.
Machine Learning.95(1-2):161-205.
Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model Tree Induction.
In: 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, 675-683, 2005.
(based on WEKA 3.7)
For further options, click the 'More' - button in the dialog.
All weka dialogs have a panel where you can specify classifier-specific parameters.
B: Binary splits (convert nominal attributes to binary ones)
R: Split on residuals instead of class values
C: Use cross-validation for boosting at all nodes (i.e., disable heuristic)
P: Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.
I: Set fixed number of iterations for LogitBoost (instead of using cross-validation)
M: Set minimum number of instances at which a node can be split (default 15)
W: Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.
A: The AIC is used to choose the best iteration.
The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.
Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.
Capabilities: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, Missing values, Nominal class, Binary class, Missing class values] Dependencies: [] min # Instance: 1
It shows the command line options according to the current classifier configuration and mainly serves to support the node's configuration via flow variables.
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME Weka Data Mining Integration (3.7) from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com, follow @NodePit on Twitter or botsin.space/@nodepit on Mastodon.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.