SimpleLinearRegression (3.6)

Learns a simple linear regression model. Picks the attribute that results in the lowest squared error. Missing values are not allowed. Can only deal with numeric attributes.

(based on WEKA 3.6)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Options

Class column
Choose the column that contains the target variable.
Preliminary Attribute Check

The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.

Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.

Capabilities: [Numeric attributes, Date attributes, Numeric class, Date class, Missing class values] Dependencies: [] min # Instance: 1

Classifier Options

D: If set, classifier is run in debug mode and may output additional info to the console

Input Ports

Icon
Training data

Output Ports

Icon
Trained classifier

Popular Predecessors

  • No recommendations found

Popular Successors

  • No recommendations found

Views

Weka Node View
Each Weka node provides a summary view that provides information about the classification. If the test data contains a class column, an evaluation is generated.

Workflows

  • No workflows found

Further Links

Developers

You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.