This metaclassifier makes its base classifier cost-sensitive using the method specified in Pedro Domingos: MetaCost: A general method for making classifiers cost-sensitive. In: Fifth International Conference on Knowledge Discovery and Data Mining, 155-164, 1999. This classifier should produce similar results to one created by passing the base learner to Bagging, which is in turn passed to a CostSensitiveClassifier operating on minimum expected cost. The difference is that MetaCost produces a single cost-sensitive classifier of the base learner, giving the benefits of fast classification and interpretable output (if the base learner itself is interpretable). This implementation uses all bagging iterations when reclassifying training data (the MetaCost paper reports a marginal improvement when only those iterations containing each training instance are used in reclassifying that instance).
(based on WEKA 3.6)
For further options, click the 'More' - button in the dialog.
All weka dialogs have a panel where you can specify classifier-specific parameters.
The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.
Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.
Capabilities: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, String attributes, Relational attributes, Missing values, Nominal class, Binary class, Missing class values] Dependencies: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, String attributes, Relational attributes, Missing values, No class, Missing class values, Only multi-Instance data] min # Instance: 0
I: Number of bagging iterations. (default 10)
C: File name of a cost matrix to use. If this is not supplied, a cost matrix will be loaded on demand. The name of the on-demand file is the relation name of the training data plus ".cost", and the path to the on-demand file is specified with the -N option.
N: Name of a directory to search for cost files when loading costs on demand (default current directory).
cost-matrix: The cost matrix in Matlab single line format.
P: Size of each bag, as a percentage of the training set size. (default 100)
S: Random number seed. (default 1)
D: If set, classifier is run in debug mode and may output additional info to the console
W: Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
:
D: If set, classifier is run in debug mode and may output additional info to the console
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension KNIME Weka Data Mining Integration (3.6) (legacy) from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.