DecisionTable (3.6) (legacy)

Class for building and using a simple decision table majority classifier. For more information see: Ron Kohavi: The Power of Decision Tables. In: 8th European Conference on Machine Learning, 174-189, 1995.

(based on WEKA 3.6)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Options

Class column
Choose the column that contains the target variable.
Preliminary Attribute Check

The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.

Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.

Capabilities: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, Missing values, Nominal class, Binary class, Numeric class, Date class, Missing class values] Dependencies: [] min # Instance: 1

Classifier Options

S: Full class name of search method, followed by its options. eg: "weka.attributeSelection.BestFirst -D 1" (default weka.attributeSelection.BestFirst)

X: Use cross validation to evaluate features. Use number of folds = 1 for leave one out CV. (Default = leave one out CV)

E: Performance evaluation measure to use for selecting attributes. (Default = accuracy for discrete class and rmse for numeric class)

I: Use nearest neighbour instead of global table majority.

R: Display decision table rules.

:

P: Specify a starting set of attributes. Eg. 1,3,5-7.

D: Direction of search. (default = 1).

N: Number of non-improving nodes to consider before terminating search.

S: Size of lookup cache for evaluated subsets. Expressed as a multiple of the number of attributes in the data set. (default = 1)

Input Ports

Icon
Training data

Output Ports

Icon
Trained classifier

Popular Predecessors

  • No recommendations found

Popular Successors

  • No recommendations found

Views

Weka Node View
Each Weka node provides a summary view that provides information about the classification. If the test data contains a class column, an evaluation is generated.

Workflows

  • No workflows found

Links

Developers

You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.