DTNB (3.6) (legacy)

Class for building and using a decision table/naive bayes hybrid classifier. At each point in the search, the algorithm evaluates the merit of dividing the attributes into two disjoint subsets: one for the decision table, the other for naive Bayes. A forward selection search is used, where at each step, selected attributes are modeled by naive Bayes and the remainder by the decision table, and all attributes are modelled by the decision table initially. At each step, the algorithm also considers dropping an attribute entirely from the model. For more information, see: Mark Hall, Eibe Frank: Combining Naive Bayes and Decision Tables. In: Proceedings of the 21st Florida Artificial Intelligence Society Conference (FLAIRS), 318-319, 2008.

(based on WEKA 3.6)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Options

Class column
Choose the column that contains the target variable.
Preliminary Attribute Check

The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.

Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.

Capabilities: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, Missing values, Nominal class, Binary class, Missing class values] Dependencies: [] min # Instance: 1

Classifier Options

X: Use cross validation to evaluate features. Use number of folds = 1 for leave one out CV. (Default = leave one out CV)

E: Performance evaluation measure to use for selecting attributes. (Default = accuracy for discrete class and rmse for numeric class)

I: Use nearest neighbour instead of global table majority.

R: Display decision table rules.

Input Ports

Icon
Training data

Output Ports

Icon
Trained classifier

Popular Predecessors

  • No recommendations found

Popular Successors

  • No recommendations found

Views

Weka Node View
Each Weka node provides a summary view that provides information about the classification. If the test data contains a class column, an evaluation is generated.

Workflows

  • No workflows found

Links

Developers

You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.