ADTree (3.6)

Class for generating an alternating decision tree. The basic algorithm is based on: Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 1999. This version currently only supports two-class problems. The number of boosting iterations needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic search methods have been introduced to speed learning.

(based on WEKA 3.6)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.


Class column
Choose the column that contains the target variable.
Preliminary Attribute Check

The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.

Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.

Capabilities: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, Missing values, Binary class, Missing class values] Dependencies: [] min # Instance: 1

Classifier Options

B: Number of boosting iterations. (Default = 10)

E: Expand nodes: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk (Default = -3)

D: Save the instance data with the model

Input Ports

Training data

Output Ports

Trained classifier

Popular Predecessors

  • No recommendations found

Popular Successors

  • No recommendations found


Weka Node View
Each Weka node provides a summary view that provides information about the classification. If the test data contains a class column, an evaluation is generated.


  • No workflows found



You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.