This layer performs convolution in a single dimension with a factorization of the convolution kernel into two smaller kernels. Corresponds to the Keras Separable Convolution 1D Layer.

- Name prefix
- The name prefix of the layer. The prefix is complemented by an index suffix to obtain a unique layer name. If this option is unchecked, the name prefix is derived from the layer type.
- Filters
- The dimensionality of the output space (i.e. the number of output filters in the convolution).
- Kernel size
- The length of the 1D convolution window.
- Strides
- The stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
- Padding
- Different padding modes to apply to the spatial dimensions
(excluding the batch and channel dimensions)
of the inputs before the
pooling operation. The padding will be done
with zeroes. A detailed
explanation of the different modes can be
found
here
.
- Valid: No padding
- Same: Padding such that the spatial output dimension do not change.
- Full: Padding with kernel size - 1

- Dilation rate
- Specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
- Depth multiplier
- The number of depthwise convolution output channels for each input channel.
- Activation function
- The activation function to use.
- Use bias?
- If checked, a bias vector will be used.
- Depthwise initializer
- Initializer for the depthwise kernel matrix.
- Pointwise initializer
- Initializer for the pointwise kernel matrix.
- Bias initializer
- Initializer for the bias vector.
- Depthwise regularizer
- Regularizer function applied to the depthwise kernel matrix.
- Pointwise regularizer
- Regularizer function applied to the pointwise kernel matrix.
- Bias regularizer
- Regularizer function applied to the bias vector.
- Activation regularizer
- Regularizer function applied to the output of the layer (its "activation").
- Depthwise constraint
- Constraint function applied to the depthwise kernel matrix.
- Pointwise constraint
- Constraint function applied to the pointwise kernel matrix.
- Bias constraint
- Constraint function applied to the bias vector.

- This node has no views

- No workflows found

You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.

To use this node in KNIME, install the extension KNIME Deep Learning - Keras Integration from the below update site following our NodePit Product and Node Installation Guide:

v4.7

A zipped version of the software site can be downloaded here.

Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com, follow @NodePit on Twitter, or chat on Gitter!

**Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.**