Keras Separable Convolution 1D Layer

This Node Is Deprecated — This version of the node has been replaced with a new and improved version. The old version is kept for backwards-compatibility, but for all new workflows we suggest to use the version linked below.
Go to Suggested ReplacementKeras Separable Convolution 1D Layer

This layer performs convolution in a single dimension with a factorization of the convolution kernel into two smaller kernels. Corresponds to the Keras Separable Convolution 1D Layer.

Options

Name prefix
The name prefix of the layer. The prefix is complemented by an index suffix to obtain a unique layer name. If this option is unchecked, the name prefix is derived from the layer type.
Filters
The dimensionality of the output space (i.e. the number of output filters in the convolution).
Kernel size
The length of the 1D convolution window.
Strides
The stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
Padding
Different padding modes to apply to the spatial dimensions (excluding the batch and channel dimensions) of the inputs before the pooling operation. The padding will be done with zeroes. A detailed explanation of the different modes can be found here .
  • Valid: No padding
  • Same: Padding such that the spatial output dimension do not change.
  • Full: Padding with kernel size - 1
Dilation rate
Specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
Depth multiplier
The number of depthwise convolution output channels for each input channel.
Activation function
The activation function to use.
Use bias?
If checked, a bias vector will be used.
Depthwise initializer
Initializer for the depthwise kernel matrix.
Pointwise initializer
Initializer for the pointwise kernel matrix.
Bias initializer
Initializer for the bias vector.
Depthwise regularizer
Regularizer function applied to the depthwise kernel matrix.
Pointwise regularizer
Regularizer function applied to the pointwise kernel matrix.
Bias regularizer
Regularizer function applied to the bias vector.
Activation regularizer
Regularizer function applied to the output of the layer (its "activation").
Depthwise constraint
Constraint function applied to the depthwise kernel matrix.
Pointwise constraint
Constraint function applied to the pointwise kernel matrix.
Bias constraint
Constraint function applied to the bias vector.

Input Ports

Icon
The Keras deep learning network to which to add a Separable Convolution 1D layer.

Output Ports

Icon
The Keras deep learning network with an added Separable Convolution 1D layer.

Popular Predecessors

Popular Successors

  • No recommendations found

Views

This node has no views

Workflows

  • No workflows found

Links

Developers

You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.