hERG potassium channels play an essential role in normal electrical activity of the heart, mediating the cardiac action potential of the heartbeat. Affecting their activity by xenobiotics can have life-threatening consequences. Accordingly, hERG is one of the most important off-targets of drug discovery. Optimisation to reduce the risk of inhibiting the hERG channels during discovery projects requires computational prediction in the early design throughout the pre-synthesis phase. The hERG channel inhibition capacity of a drug is measured by its hERG activity (Act). Experimentally, hERG activity is determined by different electrophysiological methods and measured as IC50 or Ki values. However, as with other physico-chemical properties (e.g. pKa), the negative logarithm of the measured activity (pActivity) is used in the literature: pActivity = -log10(Act) Besides quantitative hERG values it is also common to provide a two-class classification of compounds for hERG activity.
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension ChemAxon/Infocom JChem Extensions Feature from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com, follow @NodePit on Twitter or botsin.space/@nodepit on Mastodon.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.