Modifies an assistant.
Specify how the response should be mapped to the table output. The following formats are available:
Structured Table: Returns a parsed table with data split into rows and columns.
assistant.code_interpreter, file_search, or function.code_interpreter tool requires a list of file IDs, while the file_search tool requires a list of vector store IDs.Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard.
Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
Specifies the format that the model must output. Compatible with GPT-4o, GPT-4 Turbo, and all GPT-3.5 Turbo models since gpt-3.5-turbo-1106.
Setting to { "type": "json_schema", "json_schema": {...} } enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the Structured Outputs guide.
Setting to { "type": "json_object" } enables JSON mode, which ensures the message the model generates is valid JSON.
Important: when using JSON mode, you must also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in a long-running and seemingly "stuck" request. Also note that the message content may be partially cut off if finish_reason="length", which indicates the generation exceeded max_tokens or the conversation exceeded the max context length.
Raw Response: Returns the raw response in a single row with the following columns:
You want to see the source code for this node? Click the following button and we’ll use our super-powers to find it for you.
To use this node in KNIME, install the extension OpenAI Nodes from the below update site following our NodePit Product and Node Installation Guide:
A zipped version of the software site can be downloaded here.
Deploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!