Level: Medium
Description: You are a data scientist asked to analyze an avocado dataset by your team. The task at hand is to pick a specific avocado type in the whole of the US and forecast its daily average prices. To do that, you should train, apply, and score an ARIMA model. Do you see any seasonality in the line plot or autocorrelation plots? Do you think a seasonal ARIMA (SARIMA) would perform better? For your model, visualize forecasts and compute scoring metrics.
アボカドの価格予測 チャレンジ14 レベル ミディアム 説明 あなたはアボカドのデータセットの分析をチームから依頼されたデータサイエンティストです。 目の前の課題は、アメリカ全土から特定のアボカドの種類を選び、その日平均価格を予測することです。 そのためには、ARIMAモデルを訓練し、適用し、採点しなければなりません。 折れ線グラフや自己相関グラフに季節性はありますか? 季節性ARIMA(SARIMA)の方が良い結果が出ると思いますか? あなたのモデルについて、予測を可視化し、スコアリング指標を計算してください。
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.