Icon

10. Advanced Data Mining - solution

Advanced Data Mining - Solution
Activity I: Random Forest Model - Read the data file CurrentDetailData.table - Partition the data 50/50 using stratified sampling on the Target column - Create a Random Forest model to predict the Target column - Use a tree depth of 5 and 50 models for each iteration. Activity II: Parameter Optimization - Add a parameter optimization loop to your Random Forest model - Use Hillclimbing to determine the optimum number of models (min=10, max=200, step=10, int = yes) - Maximize the accuracy in the loop end node. - What were the optimal settings?(hint: don't forget to use the flow variable in your learner) Activity III: Cross Validation - Create a 10-fold cross validation for your Random Forest Learner. - Calculate the mean error for the cross validation. - Does the model seem stable? Define ParametersCollect Accuracy Table Reader X-Partitioner Partitioning Scorer Parameter OptimizationLoop Start ParameterOptimization Loop End X-Aggregator Partitioning Scorer Random ForestLearner Random ForestPredictor Random ForestLearner Random ForestPredictor Random ForestLearner Random ForestPredictor Activity I: Random Forest Model - Read the data file CurrentDetailData.table - Partition the data 50/50 using stratified sampling on the Target column - Create a Random Forest model to predict the Target column - Use a tree depth of 5 and 50 models for each iteration. Activity II: Parameter Optimization - Add a parameter optimization loop to your Random Forest model - Use Hillclimbing to determine the optimum number of models (min=10, max=200, step=10, int = yes) - Maximize the accuracy in the loop end node. - What were the optimal settings?(hint: don't forget to use the flow variable in your learner) Activity III: Cross Validation - Create a 10-fold cross validation for your Random Forest Learner. - Calculate the mean error for the cross validation. - Does the model seem stable? Define ParametersCollect Accuracy Table Reader X-Partitioner Partitioning Scorer Parameter OptimizationLoop Start ParameterOptimization Loop End X-Aggregator Partitioning Scorer Random ForestLearner Random ForestPredictor Random ForestLearner Random ForestPredictor Random ForestLearner Random ForestPredictor

Nodes

Extensions

Links