This workflow snippet demonstrates how to train a bioactivity model using chemical structures. From the chemical structure we generate hashed bit-based fingerprints. Those fingerprints serve as an input for the Random Forest model. The model is trained on a part of the data set (training data set). For the remaining data (test data set) the model is applied and the predictions are evaluated using the ROC Curve node and the Scorer node in a composite view.
The dataset represents a subset of 844 compounds evaluated for activity against CDPK1. 181 compounds inhibited CDPK1 with IC50 below 1uM and have "active" as their class.
More information is available https://chembl.gitbook.io/chembl-ntd/#deposited-set-19-5th-march-2016-uw-kinase-screening-hits. See Set 19.
To use this workflow in KNIME, download it from the below URL and open it in KNIME:
Download WorkflowDeploy, schedule, execute, and monitor your KNIME workflows locally, in the cloud or on-premises – with our brand new NodePit Runner.
Try NodePit Runner!Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.