Icon

05-k-means-wine-solution

Input Data Preparation TODO: Clustering with k-means External Evaluation Statistics k-Means Clustering Loop over different k Internal Evaluation with Silhouette combine Data find best k for k means based on silhouette coefficient and with parameter optimization loop find best k based on silhouette coeff. by means of a component Internal Evaluation with Total Squared Distance clustering with k-medoid Normalize columnsShow statisticsAssess QualityExtract QualityCreate possible values for kNode 45Node 46Node 51Node 54Node 55Node 60Node 63Extract QualityNode 67Node 68Node 71labels(contain the "real" groups)winesNode 74loop over k from 2...10type (label col) is not usedNode 78Node 80score with reference clusteringExtract QualityExtract QualityNode 86Node 87do the clustering for best kNode 90Node 93Node 94Node 95create a loop for kNode 98Node 99Node 100Node 101Node 102Node 103Node 104Node 105Silhouette coeff vs. klabelsNode 108SummarizeNode 111combine internal validations into one tablecombine internaland external validationsinto 1 tablevisualizeOptimized K-Means(Silhouette Coefficient) Normalizer Statistics Entropy Scorer Row Filter Table Creator Rank Correlation Linear Correlation Color Manager Shape Manager Scatter Plot(local) k-Means SilhouetteCoefficient Row Filter Column Resorter Sorter Number To String CSV Reader CSV Reader Normalizer Parameter OptimizationLoop Start k-Means SilhouetteCoefficient Number To String Entropy Scorer Row Filter Row Filter ParameterOptimization Loop End Table Columnto Variable k-Means 2D/3D Scatterplot Variable toTable Column Variable toTable Column Variable toTable Column Table Row ToVariable Loop Start Sorter SilhouetteCoefficient Math Formula Bar Chart Number To String k-Medoids Numeric Distances SilhouetteCoefficient Scatter Plot CSV Reader CSV Reader Loop End CalcSquaredDistances Joiner Joiner Joiner Scatter Plot Input Data Preparation TODO: Clustering with k-means External Evaluation Statistics k-Means Clustering Loop over different k Internal Evaluation with Silhouette combine Data find best k for k means based on silhouette coefficient and with parameter optimization loop find best k based on silhouette coeff. by means of a component Internal Evaluation with Total Squared Distance clustering with k-medoid Normalize columnsShow statisticsAssess QualityExtract QualityCreate possible values for kNode 45Node 46Node 51Node 54Node 55Node 60Node 63Extract QualityNode 67Node 68Node 71labels(contain the "real" groups)winesNode 74loop over k from 2...10type (label col) is not usedNode 78Node 80score with reference clusteringExtract QualityExtract QualityNode 86Node 87do the clustering for best kNode 90Node 93Node 94Node 95create a loop for kNode 98Node 99Node 100Node 101Node 102Node 103Node 104Node 105Silhouette coeff vs. klabelsNode 108SummarizeNode 111combine internal validations into one tablecombine internaland external validationsinto 1 tablevisualizeOptimized K-Means(Silhouette Coefficient) Normalizer Statistics Entropy Scorer Row Filter Table Creator Rank Correlation Linear Correlation Color Manager Shape Manager Scatter Plot(local) k-Means SilhouetteCoefficient Row Filter Column Resorter Sorter Number To String CSV Reader CSV Reader Normalizer Parameter OptimizationLoop Start k-Means SilhouetteCoefficient Number To String Entropy Scorer Row Filter Row Filter ParameterOptimization Loop End Table Columnto Variable k-Means 2D/3D Scatterplot Variable toTable Column Variable toTable Column Variable toTable Column Table Row ToVariable Loop Start Sorter SilhouetteCoefficient Math Formula Bar Chart Number To String k-Medoids Numeric Distances SilhouetteCoefficient Scatter Plot CSV Reader CSV Reader Loop End CalcSquaredDistances Joiner Joiner Joiner Scatter Plot

Nodes

Extensions

Links