Icon

BENFORD

BENFORD
According to BENFORD first-digit law (https://en.wikipedia.org/wiki/Benford's_law), in many naturally occurring collections of numbers, the leading significant digit is likely tofolow a probability frequency P(d)=Log10(1+1/d) with d=1..9. This result applies to a wide variety of data sets.This example workflow presents a chart comparing BENFORD expected first digits frequency with the example data set for 1digit and 2 digits TESTDATAJoinBENFORDFirst Digit %First DigitDistributionFirst 2 DigitsDistributionJoinBENFORDFirst 2 Digits %BENFORDDiferenceBENFORDDiferenceHeaderStyleSelectFirst 2 DigitsSelectFirst DigitBEFORDNORMAL DIGITDISTRIBUTIONBENFORDDistribution Table Creator Joiner Bar Chart Bar Chart Joiner Math Formula Math Formula CSS Editor First 2 Digits First Digit BENFORDDISTRIBUTION Bar Chart According to BENFORD first-digit law (https://en.wikipedia.org/wiki/Benford's_law), in many naturally occurring collections of numbers, the leading significant digit is likely tofolow a probability frequency P(d)=Log10(1+1/d) with d=1..9. This result applies to a wide variety of data sets.This example workflow presents a chart comparing BENFORD expected first digits frequency with the example data set for 1digit and 2 digits TESTDATAJoinBENFORDFirst Digit %First DigitDistributionFirst 2 DigitsDistributionJoinBENFORDFirst 2 Digits %BENFORDDiferenceBENFORDDiferenceHeaderStyleSelectFirst 2 DigitsSelectFirst DigitBEFORDNORMAL DIGITDISTRIBUTIONBENFORDDistributionTable Creator Joiner Bar Chart Bar Chart Joiner Math Formula Math Formula CSS Editor First 2 Digits First Digit BENFORDDISTRIBUTION Bar Chart

Nodes

Extensions

Links