This category contains 32 nodes.
Meta classifier that allows standard classification algorithms to be applied to ordinal class problems. For more information see: Eibe Frank, Mark Hall: […]
Classifier for incremental learning of large datasets by way of racing logit-boosted committees. For more information see: Eibe Frank, Geoffrey Holmes, […]
Class for building an ensemble of randomizable base classifiers. Each base classifiers is built using a different random number seed (but based one the same […]
This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows […]
A regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized. The predicted value is the […]
Class for construction a Rotation Forest. Can do classification and regression depending on the base learner. For more information, see Juan J. […]
Combines several classifiers using the stacking method. Can do classification or regression. For more information, see David H. Wolpert (1992). Stacked […]
Implements StackingC (more efficient version of stacking). For more information, see A.K. Seewald: How to Make Stacking Better and Faster While Also […]
A metaclassifier that selecting a mid-point threshold on the probability output by a Classifier. The midpoint threshold is set so that a given performance […]
Class for combining classifiers. Different combinations of probability estimates for classification are available. For more information see: Ludmila I. […]
Do you have feedback, questions, comments about NodePit, want to support this platform, or want your own nodes or workflows listed here as well? Do you think, the search results could be improved or something is missing? Then please get in touch! Alternatively, you can send us an email to mail@nodepit.com.
Please note that this is only about NodePit. We do not provide general support for KNIME — please use the KNIME forums instead.